9.3 Van Wijngaarden—Dekker—Brent Method 359

for (j=1;j<=MAXIT;j++) {
xm=0.5% (x1+xh) ;

fm=(*func) (xm) ; First of two function evaluations per it-
s=sqrt (fm*fm-f1*fh) ; eration.
if (s == 0.0) return ans;
xnew=xm+(xm-x1)*((f1 >= fh ? 1.0 : -1.0)*fm/s); Updating formula.
if (fabs(xnew-ans) <= xacc) return ans;
ans=xnew;
fnew=(*func) (ans) ; Second of two function evaluations per
if (fnew == 0.0) return ans; iteration.
if (SIGN(fm,fnew) !'= fm) { Bookkeeping to keep the root bracketed
x1=xm; on next iteration.
fl=fm;
xh=ans;
fh=fnew;
} else if (SIGN(fl,fnew) != f1) {
xh=ans;
fh=fnew;
} else if (SIGN(fh,fnew) != fh) {
xl=ans;
fl=fnew;

} else nrerror("never get here.");
if (fabs(xh-x1) <= xacc) return ans;

}
nrerror ("zriddr exceed maximum iterations");
}
else {
if (f1 == 0.0) return x1;
if (fh == 0.0) return x2;
nrerror ("root must be bracketed in zriddr.");
}
return 0.0; Never get here.

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §8.3.

Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press), Chapter 12.

Ridders, C.J.F. 1979, IEEE Transactions on Circuits and Systems, vol. CAS-26, pp. 979-980. [1]

9.3 Van Wijngaarden—Dekker—-Brent Method

While secant and false position formally converge faster than bisection, one
findsin practice pathological functions for which bisection converges more rapidly.
These can be choppy, discontinuous functions, or even smooth functions if the
second derivative changes sharply near theroot. Bisection alwayshalvestheinterval,
while secant and false position can sometimes spend many cycles slowly pulling
distant bounds closer to a root. Ridders method does a much better job, but it
too can sometimes be fooled. Is there a way to combine superlinear convergence
with the sureness of bisection?

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

360 Chapter 9. Root Finding and Nonlinear Sets of Equations

Yes. We can keep track of whether a supposedly superlinear method is actually
converging the way it is supposed to, and, if it is not, we can intersperse bisection
steps so as to guarantee at least linear convergence. This kind of super-strategy
requires attention to bookkeeping detail, and also careful consideration of how
roundoff errors can affect the guiding strategy. Also, we must be able to determine
reliably when convergence has been achieved.

An excellent algorithm that pays close attention to these matters was devel oped
in the 1960s by van Wijngaarden, Dekker, and others at the Mathematical Center
in Amsterdam, and later improved by Brent [1]. For brevity, we refer to the final
form of the algorithm as Brent’s method. The method is guaranteed (by Brent)
to converge, so long as the function can be evaluated within the initial interval
known to contain a root.

Brent’s method combines root bracketing, bisection, and inverse quadratic
inter polation to converge from the neighborhood of a zero crossing. While the false
position and secant methods assume approximately linear behavior between two
prior root estimates, inverse quadratic interpolation uses three prior points to fit an
inverse quadratic function (x as a quadratic function of y) whosevalueat y = 0 is
taken as the next estimate of the root z. Of course one must have contingency plans
for what to do if the root falls outside of the brackets. Brent’s method takes care of
al that. If thethree point pairsare [a, f(a)], [b, f(b)], [¢, f(c)] then the interpolation
formula (cf. equation 3.1.1) is

po W= f@Ny = f®)le [y fOIly = fle)la
[f(e) = f(a)lf(e) = FO)] ~ [f(a) = FB)][f(a) = f(e)]
ly = f()lly = fla))b

[£(0) = F(If(b) = f(a)]

Setting y to zero gives a result for the next root estimate, which can be written as

(9.3.1)
+

z=b+P/Q (9.3.2)
where, in terms of
R=[f(0)/f(c), S=[f®)/fla), T=f(a)/f(c) (933)
we have
P=S[T(R-T)(c—b)—(1—-R)(b—a) (9.3.4)
Q=(T-1)(R-1)(S—1) (9.35)

In practice b is the current best estimate of the root and P/ ought to be a “small”
correction. Quadratic methodswork well only when the function behaves smoothly;
they run the serious risk of giving very bad estimates of the next root or causing
machine failure by an inappropriate division by a very small number (Q = 0).
Brent’s method guards against this problem by maintaining brackets on the root
and checking where the interpolation would land before carrying out the division.
When the correction P/@Q would not land within the bounds, or when the bounds
are not collapsing rapidly enough, the algorithm takes a bisection step. Thus,

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

9.3 Van Wijngaarden—Dekker—Brent Method 361

Brent’s method combines the sureness of bisection with the speed of a higher-order
method when appropriate. We recommend it as the method of choice for general
one-dimensional root finding where a function’s values only (and not its derivative
or functional form) are available.

#include <math.h>

#include "nrutil.h"

#define ITMAX 100 Maximum allowed number of iterations.
#define EPS 3.0e-8 Machine floating-point precision.

float zbrent(float (*func) (float), float x1, float x2, float tol)
Using Brent’s method, find the root of a function func known to lie between x1 and x2. The
root, returned as zbrent, will be refined until its accuracy is tol.
{
int iter;
float a=x1,b=x2,c=x2,d,e,minl,min2;
float fa=(*func) (a),fb=(*func) (b),fc,p,q,r,s,toll,xm;

if ((fa > 0.0 & fb > 0.0) || (fa < 0.0 & fb < 0.0))
nrerror ("Root must be bracketed in zbrent");

fc=£fb;

for (iter=1;iter<=ITMAX;iter++) {
if ((fb > 0.0 && fc > 0.0) || (fb < 0.0 && fc < 0.0)) {

c=a; Rename a, b, c and adjust bounding interval
fc=fa; d.
e=d=b-a;
}
if (fabs(fc) < fabs(fb)) {
a=b;
b=c;
c=a;
fa=fb;
fb=fc;
fc=fa;
}
toll=2.0*EPS*fabs(b)+0.5%tol; Convergence check
xm=0.5%(c-b) ;

if (fabs(xm) <= toll || fb == 0.0) return b;
if (fabs(e) >= toll && fabs(fa) > fabs(fb)) {
s=fb/fa; Attempt inverse quadratic interpolation.
if (a == ¢c) {
p=2.0%xm*s;
q=1.0-s;
} else {
g=fa/fc;
r=fb/fc;
p=s*(2.0*xm*q* (q-r)-(b-a)*(r-1.0));
q=(g-1.0)*(r-1.0)*(s-1.0);

if (p > 0.0) q = -q; Check whether in bounds.
p=fabs(p);

min1=3.0*xm*q-fabs (tollxq) ;

min2=fabs(e*q) ;

if (2.0*p < (minl < min2 ? minl : min2)) {

e=d; Accept interpolation.
d=p/q;
} else {
d=xm; Interpolation failed, use bisection.
e=d;
}
} else { Bounds decreasing too slowly, use bisection.
d=xm;

e=d;

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

362 Chapter 9. Root Finding and Nonlinear Sets of Equations

}
a=b; Move last best guess to a.
fa=£fb;
if (fabs(d) > toll) Evaluate new trial root.
b += d;
else

b += SIGN(toll,xm);
fb=(*func) (b);

}
nrerror ("Maximum number of iterations exceeded in zbrent");
return 0.0; Never get here.

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapters 3, 4. [1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §7.2.

9.4 Newton-Raphson Method Using Derivative

Perhapsthe most celebrated of all one-dimensional root-finding routinesis New-
ton’s method, also called the Newton-Raphson method. This method is distinguished
from the methods of previous sections by the fact that it requires the evaluation
of both the function f(z), and the derivative f’(z), a arbitrary points . The
Newton-Raphson formula consists geometrically of extending the tangent line at a
current point z; until it crosses zero, then setting the next guess z; 11 to the abscissa
of that zero-crossing (see Figure 9.4.1). Algebraically, the method derives from the
familiar Taylor series expansion of a function in the neighborhood of a point,

flz+06)~ f(z)+ f'(2)d + @52-‘1-.... (9.4.1)

For small enough values of 4§, and for well-behaved functions, the terms beyond
linear are unimportant, hence f(z + 6) = 0 implies

f(z)
1) @) (9.4.2)

Newton-Raphson is not restricted to one dimension. The method readily
generalizes to multiple dimensions, as we shall seein §9.6 and §9.7, below.

Far from a root, where the higher-order terms in the series are important, the
Newton-Raphson formula can give grossly inaccurate, meaningless corrections. For
instance, the initial guess for the root might be so far from the true root as to let
the search interval include alocal maximum or minimum of the function. This can
be death to the method (see Figure 9.4.2). If an iteration places a trial guess near
such alocal extremum, so that the first derivative nearly vanishes, then Newton-
Raphson sends its solution off to limbo, with vanishingly small hope of recovery.

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny
81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

