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For example, a combined advective-diffusion equation, such as

u u 2u
% = _Ug_x + D% (19.3.21)
might profitably use an explicit scheme for the advective term combined with a
Crank-Nicolson or other implicit scheme for the diffusion term.

The alternating-direction implicit (ADI) method, equation (19.3.16), is an
example of operator splitting with a dightly different twist. Let us reinterpret
(19.3.19) to have a different meaning: Let I/, now denote an updating method that
includes algebraically all the pieces of the total operator £, but which is desirably
stable only for the £, piece; likewise Us, . . .U,,. Then a method of getting from
u” to u"tt s

u Y™ =y (u”, At/m)

"M = U (WY ™ At /m)
(19.3.22)

untl = Z/lm(unﬂm*l)/m, At/m)

Thetimestep for each fractional stepin (19.3.22) isnow only 1 /m of thefull timestep,
because each partial operation acts with all the terms of the original operator.

Equation (19.3.22) isusually, though not always, stable as adifferencing scheme
for the operator £. Infact, asarule of thumb, it is often sufficient to have stable i/ ;’s
only for the operator pieces having the highest number of spatial derivatives — the
other U4;'s can be unstable — to make the overall scheme stable!

It is at this point that we turn our attention from initial value problems to
boundary value problems. These will occupy us for the remainder of the chapter.

CITED REFERENCES AND FURTHER READING:

Ames, W.F. 1977, Numerical Methods for Partial Differential Equations, 2nd ed. (New York:
Academic Press).

19.4 Fourier and Cyclic Reduction Methods for
Boundary Value Problems

As discussed in §19.0, most boundary value problems (elliptic equations, for
example) reduce to solving large sparse linear systems of the form

A-u=b (19.4.1)

either once, for boundary value equationsthat are linear, or iteratively, for boundary
value equations that are nonlinear.
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858 Chapter 19.  Partial Differential Equations

Two important techniques lead to “rapid” solution of eguation (19.4.1) when
the sparse matrix is of certain frequently occurring forms. The Fourier transform
method is directly applicable when the equations have coefficients that are constant
in space. The cyclic reduction method is somewhat more general; its applicability
is related to the question of whether the equations are separable (in the sense of
“separation of variables’). Both methods require the boundaries to coincide with
the coordinate lines. Finally, for some problems, there is a powerful combination
of these two methods called FACR (Fourier Analysis and Cyclic Reduction). We
now consider each method in turn, using equation (19.0.3), with finite-difference
representation (19.0.6), asamodel example. Generally speaking, the methodsin this
section are faster, when they apply, than the simpler relaxation methods discussed
in §19.5; but they are not necessarily faster than the more complicated multigrid
methods discussed in §19.6.

Fourier Transform Method

The discrete inverse Fourier transform in both  and y is
1 J—1L—-1
o ~ —2nigm/J ,—2miln/L
g =25 D Y eI e (19.4.2)

m=0n=0

This can be computed using the FFT independently in each dimension, or else al at
once viathe routine fourn of §12.4 or the routine r1ft3 of §12.5. Similarly,

pjl = — Z Z ﬁmne—Qﬂ'ijm/Je—%riln/L (1943)

If we substitute expressions (19.4.2) and (19.4.3) in our model problem (19.0.6),
we find

amn (eQﬂim/J + 6727rim/J + e27rin/L + 6727rin/L _ 4) _ ﬁmnA2 (1944)

or ,
AmnA
T = P (19.4.5)
< 2rm 2mn >
2 | cos + cos — —
L
Thus the strategy for solving equation (19.0.6) by FFT techniquesis:
e Compute p,,, as the Fourier transform
J—1L-1 o )
ﬁmn — Z Z it eQﬂ’LmJ/JeQTFan/L (1946)
=0 1=0

e Compute u,,, from equation (19.4.5).
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19.4 Fourier and Cyclic Reduction Methods 859

e Compute u;; by the inverse Fourier transform (19.4.2).
The above procedureis valid for periodic boundary conditions. In other words,
the solution satisfies

Ujp = Ujq gl = Uj i+ L (19.4.7)

Next consider aDirichlet boundary condition« = 0 ontherectangular boundary.
Instead of the expansion (19.4.2), we now need an expansion in sine waves.

~
|

1
Wy SIN
1

l
" in % (19.4.8)

Ujr =

M

22 %
JL

1n

This satisfies the boundary conditionsthat w =0 at j = 0,J andat ! = 0, L. If we
substitute this expansion and the analogous one for p j;; into equation (19.0.6), we
find that the solution procedure parallels that for periodic boundary conditions:

e Compute p,,, by the sine transform

J—1L-1 7rln
Prn = 19.4.9

(A fast sine transform algorithm was given in §12.3.)
e Compute u,,, from the expression analogous to (19.4.5),

A%ppn,

Umn = 5 ( T N ™ 2)
€08 — + oS — —
J L

(19.4.10)

o Compute uj; by the inverse sine transform (19.4.8).

If we have inhomogeneous boundary conditions, for example © = 0 on all
boundaries except w = f(y) on the boundary x = JA, we have to add to the above
solution a solution « ! of the homogeneous equation

u 0%u
72 + e 0 (19.4.11)
that satisfies the required boundary conditions. In the continuum case, this would
be an expression of the form

s mry
A, h 19.4.12
=3 s T s 19412

where A,, would be found by requiring that « = f(y) a « = JA. In the discrete
case, we have

jl

2 — . mnl
= E ; th S111 T (19413)
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860 Chapter 19.  Partial Differential Equations

If f(y =1A) = f;, then we get A,, from the inverse formula

L—-1
1 mnl
Ap = =7+~ sin — 19.4.14
sinh (7n.J/L) l;fl T ( )
The complete solution to the problem is
u=uj +ull (19.4.15)

By adding appropriate terms of the form (19.4.12), we can handle inhomogeneous
terms on any boundary surface.

A much ssimpler procedure for handling inhomogeneous terms is to note that
whenever boundary terms appear on the left-hand side of (19.0.6), they can be taken
over to the right-hand side since they are known. The effective source term is
therefore p;; plus a contribution from the boundary terms. To implement this idea
formally, write the solution as

u=u +uP (19.4.16)

where v/ = 0 on the boundary, while «? vanishes everywhere except on the
boundary. There it takes on the given boundary value. In the above example, the
only nonzero values of v? would be

uf; = fi (19.4.17)
The model equation (19.0.3) becomes
Vi = -V*uP +p (19.4.18)
or, in finite-difference form,
Wiy WGy U G — A, =

(19.4.19)
- (Ufﬂ,z + Uﬁl,l + ufl+1 + Ufz& - 4“51) + A%pj

All the u” termsin equation (19.4.19) vanish except when the equation is evaluated
aj =J—1, where

wly gy b Ul U A = —fi+ A%pyoay (19.4.20)

Thus the problem is now equivalent to the case of zero boundary conditions, except
that one row of the source term is modified by the replacement

Npyyg— Npyvi—fi (19.4.21)

The case of Neumann boundary conditions Vu = 0 is handled by the cosine
expansion (12.3.17):

L .
l
ZH Upmn COS Fij cos W—Ln (19.4.22)
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19.4 Fourier and Cyclic Reduction Methods 861

Here the double prime notation means that the terms for m = 0 and m = J should
be multiplied by % and similarly for n = 0 and n = L. Inhomogeneous terms
Vu = g can be again included by adding a suitable solution of the homogeneous
equation, or more ssimply by taking boundary terms over to the right-hand side. For
example, the condition

ou

e 9(y) a x2=0 (19.4.23)
becomes
Ul —U—1,1
A =0 (19.4.24)

where g; = g(y = IA). Once again we write the solution in the form (19.4.16),
where now Vu’ = 0 on the boundary. This time Vu? takes on the prescribed
value on the boundary, but « 2 vanishes everywhere except just outside the boundary.
Thus equation (19.4.24) gives

uy = —2Ag, (19.4.25)
All the v® terms in equation (19.4.19) vanish except when j = 0:
’LLllJ + U/_L[ + u/O,H—I + Ulo,l—l — 4“6,1 = 2Agl + A2p0,l (19426)

Thus v’ is the solution of a zero-gradient problem, with the source term modified
by the replacement

A2po; — A’po + 2Ag, (19.4.27)

Sometimes Neumann boundary conditions are handled by using a staggered
grid, with the ’s defined midway between zone boundaries so that first derivatives
are centered on the mesh points. You can solve such problems using similar
techniques to those described above if you use the aternative form of the cosine
transform, equation (12.3.23).

Cyclic Reduction

Evidently the FFT method works only when the original PDE has constant
coefficients, and boundaries that coincide with the coordinate lines. An alternative
algorithm, which can be used on somewhat more general equations, is called cyclic
reduction (CR).

We illustrate cyclic reduction on the equation

@ + @ +b( )@
ox? = Oy? 4 Jy

+ c(y)u = g(z,y) (19.4.28)
This form arises very often in practice from the Helmholtz or Poisson equationsin
polar, cylindrical, or spherical coordinate systems. More general separable equations
are treated in[1].
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862 Chapter 19.  Partial Differential Equations

The finite-difference form of equation (19.4.28) can be written as a set of
vector equations

uj—l 4+ T. uj 4+ uj+l = ng2 (19429)

Heretheindex 5 comesfrom differencingin the x-direction, while the y-differencing
(denoted by the index [ previoudly) has been left in vector form. The matrix T
has the form

T=B-21 (19.4.30)

wherethe 21 comesfromthe z-differencing and the matrix B from the y-differencing.
The matrix B, and hence T, is tridiagonal with variable coefficients.

The CR method is derived by writing down three successive equations like
(19.4.29):

Ujo+T Uiy +u; =g, ;A
U1+ T Uy +Uujpg = g; A7 (19.4.31)

Uj + T - Ujsr + Ujpo = g, A?

Matrix-multiplying the middle equation by —T and then adding the three equations,
we get

Ujmo +TM Uy 4 uypp = gV A (19.4.32)
This is an equation of the same form as (19.4.29), with

T =21 -T2
(19.4.33)
g;-l) = Az(gj—l -T-9;+9:1)

After one level of CR, we have reduced the number of equations by a factor of
two. Since the resulting equations are of the same form as the original equation, we
can repeat the process. Taking the number of mesh points to be a power of 2 for
simplicity, we finally end up with a single equation for the central line of variables:

T Uy, = A%, — Uy — uy (19.4.34)

Here we have moved u, and u; to the right-hand side because they are known
boundary values. Equation (19.4.34) can be solved for u ;,, by the standard
tridiagonal agorithm. Thetwo equationsat level f — 1 involveu ;4 and us;/4. The
equation for u ;4 involves ug and u 52, both of which are known, and hence can be
solved by the usual tridiagonal routine. A similar result holds true at every stage,
so we end up solving J — 1 tridiagonal systems.

In practice, equations (19.4.33) should be rewritten to avoid numerical instabil-
ity. For these and other practical details, refer to [2].
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19.5 Relaxation Methods for Boundary Value Problems 863

FACR Method

The best way to solve equations of the form (19.4.28), including the constant
coefficient problem (19.0.3),isacombination of Fourier analysisand cyclic reduction,
the FACR method [3-6]. If at the rth stage of CR we Fourier analyze the equations of
the form (19.4.32) along y, that is, with respect to the suppressed vector index, we
will have atridiagonal system in the x-direction for each y-Fourier mode;

@y AT Tk, = A20F (19.4.35)

Here A,(f) is the eigenvalue of T™ corresponding to the kth Fourier mode. For

the eguation (19.0.3), equation (19.4.5) shows that A,(:) will involve terms like
cos(2mk /L) — 2 raised to a power. Solvethetridiagonal systemsfor u% at thelevels
j=2".2x2"4x2" .., J—2". Fourier synthesize to get the y-values on these
z-lines. Thenfill in the intermediate 2-lines as in the original CR algorithm.

The trick is to choose the number of levels of CR so as to minimize the total
number of arithmetic operations. One can show that for atypical case of a128x128
mesh, the optimal level is r = 2; asymptoticaly, r — log,(log, J).

A rough estimate of running times for these algorithms for equation (19.0.3)
is as follows: The FFT method (in both 2 and y) and the CR method are roughly
comparable. FACR with » = 0 (that is, FFT in one dimension and solve the
tridiagonal eguations by the usual agorithm in the other dimension) gives about a
factor of two gain in speed. The optimal FACR with r» = 2 gives another factor
of two gain in speed.
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19.5 Relaxation Methods for Boundary Value
Problems

As we mentioned in §19.0, relaxation methods involve splitting the sparse
matrix that arises from finite differencing and then iterating until a solution is found.

There is another way of thinking about relaxation methods that is somewhat
more physical. Suppose we wish to solve the elliptic equation

Lu=p (19.5.1)
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