710 Chapter 16. Integration of Ordinary Differential Equations

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall).

Acton, ES. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 7.

Lambert, J. 1973, Computational Methods in Ordinary Differential Equations (New York: Wiley).

Lapidus, L., and Seinfeld, J. 1971, Numerical Solution of Ordinary Differential Equations (New
York: Academic Press).

16.1 Runge-Kutta Method

The formula for the Euler method is

Ynt1 = Yn + hf(Tn, Yn) (16.1.3

which advances a solution fram, tox,,.1 = x,, +h. The formulais unsymmetrical:
It advances the solution through an interkabut uses derivative information only
at the beginning of that interval (see Figure 16.1.1). That means (and you can verify,
by expansion in power series) that the step’s error is only one powkrsaialler
than the correction, i.©(h?) added to (16.1.1).

There are several reasons that Euler's method is not recommended for practic
use, among them, (i) the method is not very accurate when compared to othe
fancier, methods run at the equivalent stepsize, and (ii) neither is it very stableg
(see §16.6 below).

Consider, however, the use of a step like (16.1.1) to take a “trial” step to the
midpoint of the interval. Then use the value of bathand y at that midpoint
to compute the “real” step across the whole interval. Figure 16.1.2 illustrates the
idea. In equations,

0(Ajuo eauBWY YUON) £21/-2/8-008-T I[9 0 W0 U Mmm//:dny

pauqiyold Apos si ‘19Indwod 1aAias Aue 01 (suo siyy Buipnoul) saji a|qepeal

s puss |

=

allp o] |1

©NMIBSISNOID

125]

kl = hf(xnvyn)
ky = hf (Tn + 3h,yn + 2k1) (16.1.2
Yn+1 = Yn + k? + O(hg)

As indicated in the error term, this symmetrization cancels out the first-order error
term, making the methodecond order. [A method is conventionally calledth
order if its error term isO(h"*1).] In fact, (16.1.2) is called theecond-order
Runge-Kutta or midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side
f(z,y) that all agree to first order, but that have different coefficients of higher-order
error terms. Adding up the right combination of these, we can eliminate the error
terms order by order. That is the basic idea of the Runge-Kutta method. Abramowitz
and Steguift], and Geal2], give various specific formulas that derive from this basic

‘(eauBwy YuUoN apisino) Bio abpuqu

21ISaM ISIA ‘'SINOYAD 10 $00q sadioay [eouawinN Japlo 01
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

16.1 Runge-Kutta Method 711

y(x) _.--®
2
Q-
f f f
X1 X2 X3 X

Figure 16.1.1. Euler's method. In this simplest (and least accurate) method for integrating an ODE,
the derivative at the starting point of each interval is extrapolated to find the next function value. The
method has first-order accuracy.

y()

X1 X2 X3 X

Figure 16.1.2. Midpoint method. Second-order accuracy is obtained by using the initial derivative at
each step to find a point halfway across the interval, then using the midpoint derivative across the full
width of the interval. In the figure, filled dots represent final function values, while open dots represent
function values that are discarded once their derivatives have been calculated and used.

idea. By far the most often used is the classical fourth-order Runge-Kutta formula,
which has a certain deekness of organization about it:

kl = hf(ZCn, yn)

h k
by = hf(n + 5yn +)

h k
ks = hf(n + 5yn +)

ko = hf(zn+h,yn + ks)

ki | ke ks | ks 5
il =Yn+ —+ — + — + — h 16.1.3
Ynt1 =Y+ =+ 5+ 5+ +OR) ()
The fourth-order Runge-Kutta method requires four evaluations of the right-
hand side per step h (see Figure 16.1.3). This will be superior to the midpoint
method (16.1.2) if at |least twice as large a step is possible with (16.1.3) for the same
accuracy. Isthat so? The answer is: often, perhaps even usually, but surely not
always! Thistakesusback to acentral theme, namely that high order does not always
mean high accuracy. The statement “fourth-order Runge-Kuttais generally superior
to second-order” is a true one, but you should recognize it as a statement about the

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

712 Chapter 16. Integration of Ordinary Differential Equations

Figure 16.1.3. Fourth-order Runge-Kutta method. In each step the derivative is evaluated four times:
once at the initial point, twice at trial midpoints, and once at atrial endpoint. From these derivatives the
final function value (shown as a filled dot) is calculated. (See text for details.)

contemporary practice of science rather than as a statement about strict mathematics.
Thatis, it reflectsthe nature of the problemsthat contemporary scientistsliketo solve.

For many scientific users, fourth-order Runge-Kuttais not just the first word on
ODE integrators, but the last word as well. In fact, you can get pretty far on this old
workhorse, especially if you combine it with an adaptive stepsize algorithm. Keep
in mind, however, that the old workhorse's last trip may well be to take you to the
poorhouse: Bulirsch-Stoer or predictor-corrector methods can be very much more
efficient for problems where very high accuracy is a requirement. Those methods
are the high-strung racehorses. Runge-Kutta is for ploughing the fields. However,
even the old workhorse is more nimble with new horseshoes. In §16.2 we will give
amodern implementation of a Runge-Kutta method that is quite competitive as long
as very high accuracy is not required. An excellent discussion of the pitfalls in
constructing a good Runge-Kutta code is given in [3].

Here is the routine for carrying out one classical Runge-Kutta step on a set
of n differential equations. You input the values of the independent variables, and
you get out new values which are stepped by a stepsize h (which can be positive or
negative). You will notice that the routine requires you to supply not only function
derivs for calculating the right-hand side, but also values of the derivatives at the
starting point. Why not let the routine call derivs for thisfirst value? The answer
will become clear only in the next section, but in brief is this: This call may not be
your only one with these starting conditions. You may have taken a previous step
with too large a stepsize, and this is your replacement. In that case, you do not
want to call derivs unnecessarily at the start. Note that the routine that follows
has, therefore, only three calls to derivs.

#include "nrutil.h"

void rk4(float y[], float dydx[], int n, float x, float h, float yout[],

void (*derivs) (float, float [], float [1))
Given values for the variables y[1..n] and their derivatives dydx[1..n] known at x, use the
fourth-order Runge-Kutta method to advance the solution over an interval h and return the
incremented variables as yout [1..n], which need not be a distinct array from y. The user
supplies the routine derivs(x,y,dydx), which returns derivatives dydx at x.
{

int i;

float xh,hh,h6,*dym,*dyt,*yt;

dym=vector(1,n);
dyt=vector(1,n);

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

16.1 Runge-Kutta Method 713

yt=vector(l,n);

hh=h*0.5;

h6=h/6.0;

xh=x+hh;

for (i=1;i<=n;i++) yt[il=y[il+hh*dydx[i]; First step.
(*derivs) (xh,yt,dyt) ; Second step.
for (i=1;i<=n;i++) yt[il=y[i]+hh*dyt[i];

(*derivs) (xh,yt,dym) ; Third step.

for (i=1;i<=n;i++) {
yt[i]l=y[i]+h*dym[i];
dym[i] += dyt[il;

}
(*derivs) (x+h,yt,dyt); Fourth step.
for (i=1;i<=n;i++) Accumulate increments with proper

yout [i]=y [i]+h6* (dydx [i]+dyt [i]+2.0*dym[i]); weights.
free_vector(yt,1,n);
free_vector(dyt,1,n);
free_vector(dym,1,n);

The Runge-Kutta method treats every step in a sequence of steps in identical
manner. Prior behavior of a solution is not used in its propagation. This is
mathematically proper, since any point along thetrajectory of an ordinary differential
equation can serveasaninitia point. Thefact that all stepsaretreated identically also
makes it easy to incorporate Runge-Kuttainto relatively simple “driver” schemes.

We consider adaptive stepsize control, discussed in the next section, an essential
for serious computing. Occasionally, however, you just want to tabul ate afunction at
equally spaced intervals, and without particul arly high accuracy. Inthe most common
case, you want to produce a graph of the function. Then all you need may be a
simple driver program that goes from an initial = ; to afinal ¢ in aspecified number
of steps. To check accuracy, double the number of steps, repeat the integration, and
compare results. This approach surely does not minimize computer time, and it can
fail for problemswhose nature requires a variabl e stepsize, but it may well minimize
user effort. On small problems, this may be the paramount consideration.

Here is such a driver, self-explanatory, which tabulates the integrated functions
in the global arrays *x and **y; be sure to allocate memory for them with the
routines vector () and matrix (), respectively.

#include "nrutil.h"
float **y,*xx; For communication back to main.

void rkdumb(float vstart[], int nvar, float x1, float x2, int nstep,

void (*derivs) (float, float [], float [1))
Starting from initial values vstart[1..nvar] known at x1 use fourth-order Runge-Kutta
to advance nstep equal increments to x2. The user-supplied routine derivs(x,v,dvdx)
evaluates derivatives. Results are stored in the global variables y[1..nvar] [1..nstep+1]
and xx[1..nstep+1].
{

void rk4(float y[], float dydx[], int n, float x, float h, float yout[],

void (*derivs)(float, float [1, float [1));

int i,k;

float x,h;

float *v,*vout,*dv;

v=vector(1,nvar);
vout=vector(1,nvar) ;

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

714 Chapter 16. Integration of Ordinary Differential Equations

dv=vector (1,nvar);
for (i=1;i<=nvar;i++) { Load starting values.
v[il=vstart[i];

yil[1]1=v[il;

}
xx[1]=x1;
x=x1;
h=(x2-x1) /nstep;
for (k=1;k<=nstep;k++) { Take nstep steps.
(xderivs) (x,v,dv);
rk4(v,dv,nvar,x,h,vout,derivs);
if ((float) (x+h) == x) nrerror("Step size too small in routine rkdumb");
x += h;
xx [k+1]=x; Store intermediate steps.
for (i=1;i<=nvar;i++) {
v[il=vout[i];
y[i] [k+1]=v[i];
}
}

free_vector(dv,1,nvar);
free_vector(vout,1,nvar);
free_vector(v,1,nvar);

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.5. [1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), Chapter 2. [2]

Shampine, L.F, and Watts, H.A. 1977, in Mathematical Software Ill, J.R. Rice, ed. (New York: Aca-
demic Press), pp. 257-275; 1979, Applied Mathematics and Computation, vol. 5, pp. 93—
121. [3]

Rice, J.R. 1983, Numerical Methods, Software, and Analysis (New York: McGraw-Hill), §9.2.

16.2 Adaptive Stepsize Control for Runge-Kutta

A good ODE integrator should exert some adaptive control over itsown progress,
making frequent changesin its stepsize. Usually the purpose of this adaptive stepsize
control is to achieve some predetermined accuracy in the solution with minimum
computational effort. Many small steps should tiptoe through treacherous terrain,
while a few great strides should speed through smooth uninteresting countryside.
The resulting gains in efficiency are not mere tens of percents or factors of two;
they can sometimes be factors of ten, a hundred, or more. Sometimes accuracy
may be demanded not directly in the solution itself, but in some related conserved
quantity that can be monitored.

Implementation of adaptive stepsize control requiresthat the stepping algorithm
signal information about its performance, most important, an estimate of itstruncation
error. Inthis section wewill learn how such information can be obtained. Obviously,

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

