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13.3 Optimal (Wiener) Filtering with the FFT

There are a number of other tasks in numerical processing that are routinely
handled with Fourier techniques. One of these is filtering for the removal of noise
froma*“ corrupted” signal. The particular situation we consider isthis: Thereissome
underlying, uncorrupted signal w(t) that we want to measure. The measurement
process is imperfect, however, and what comes out of our measurement device is a
corrupted signal ¢(t). The signal ¢(t) may be less than perfect in either or both of
two respects. First, the apparatus may not have a perfect “delta-function” response,
so that the true signal «(t) is convolved with (smeared out by) some known response
function r(t) to give a smeared signal s(t),

s(t) = /OO r(t—71)u(r)dr or S(f)=R(f)U(S) (13.31)

— 00

where S, R, U are the Fourier transforms of s,r, u, respectively. Second, the
measured signal ¢(¢) may contain an additional component of noise n(t),

c(t) = s(t) + n(t) (13.3.2)

We aready know how to deconvolve the effects of the response function r in
the absence of any noise (§13.1); wejust divide C(f) by R(f) to get a deconvolved
signal. We now want to treat the analogous problem when noise is present. Our
task is to find the optimal filter, ¢(¢) or ®(f), which, when applied to the measured
signal ¢(t) or C(f), and then deconvolved by r(t) or R(f), produces a signal u(t)
or U(f) that is as close as possible to the uncorrupted signal w(t) or U(f). In other
words we will estimate the true signal U by

(13.33)

In what sense is U to be close to U? We ask that they be close in the
least-square sense

o0 o0 — 2
/ a(t) — u(t))? dt:/ ‘U(f)—U(f)’ df isminimized. (13.3.4)

— 0o — 0o

Substituting equations (13.3.3) and (13.3.2), the right-hand side of (13.3.4) becomes

2

/°° ‘[Sm N _SW
= /_ RIS 1L = @()P +INGP [0} df

The signal S and the noise N are uncorrelated, so their cross product, when
integrated over frequency f, gave zero. (Thisis practically the definition of what we
mean by noise!) Obviously (13.3.5) will be aminimum if and only if the integrand
is minimized with respect to ®(f) at every value of f. Let us search for such a
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solution where ®( f) isareal function. Differentiating with respect to ®, and setting
the result equal to zero gives

1S()I”
IS(FI?+IN(f)P

o(f) = (13.3.6)

This is the formula for the optimal filter ®(f).

Notice that equation (13.3.6) involves .S, the smeared signal, and IV, the noise.
The two of these add up to be C, the measured signal. Equation (13.3.6) does not
containU, the“true”’ signal. Thismakesfor animportant simplification: The optimal
filter can be determined independently of the determination of the deconvolution
function that relates S and U.

To determine the optimal filter from equation (13.3.6) we need some way
of separately estimating |S|” and |[N|>. There is no way to do this from the
measured signal C' alone without some other information, or some assumption or
guess. Luckily, the extra information is often easy to obtain. For example, we
can sample a long stretch of data c¢(t) and plot its power spectral density using
equations (12.0.14), (12.1.8), and (12.1.5). This quantity is proportional to the sum
1S|” 4+ |N|?, so we have

ISP+ NP ~P(f)=ICHIP  0<f<fe (133.7)

(More sophisticated methods of estimating the power spectral density will be
discussed in §13.4 and §13.7, but the estimation aboveis almost aways good enough
for the optimal filter problem.) The resulting plot (see Figure 13.3.1) will often
immediately show the spectral signature of a signal sticking up above a continuous
noise spectrum. The noise spectrum may be flat, or tilted, or smoothly varying; it
doesn’'t matter, as long as we can guess a reasonable hypothesis as to what it is.
Draw a smooth curve through the noise spectrum, extrapolating it into the region
dominated by the signal as well. Now draw a smooth curve through the signal plus
noise power. The difference between these two curvesisyour smooth “model” of the
signal power. The quotient of your model of signal power to your model of signal
plus noise power is the optimal filter ®( /). [Extend it to negative values of f by the
formula ®(—f) = ®(f).] Noticethat ®(f) will be close to unity where the noise
is negligible, and close to zero where the noise is dominant. That is how it does its
job! The intermediate dependence given by equation (13.3.6) just turns out to be the
optimal way of going in between these two extremes.

Because the optimal filter results from a minimization problem, the quality of
the results obtained by optimal filtering differs from the true optimum by an amount
that is second order in the precision to which the optimal filter isdetermined. In other
words, even afairly crudely determined optimal filter (sloppy, say, at the 10 percent
level) can give excellent resultswhen it is applied to data. That iswhy the separation
of the measured signal C' into signal and noise components S and N can usefully be
done “by eye” from a crude plot of power spectral density. All of this may give you
thoughts about iterating the procedure we have just described. For example, after
designing afilter with response ®( f) and using it to make a respectable guess at the
signal U(f) = ®(f)C(f)/R(f), you might turn about and regard U(f) as a fresh
new signal which you could improve even further with the same filtering technique.
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Figure 13.3.1. Optimal (Wiener) filtering. The power spectrum of signal plus noise shows asignal peak
added to anoise tail. Thetail is extrapolated back into the signal region as a“noise model.” Subtracting
givesthe“signal model.” The models need not be accurate for the method to be useful. A simple algebraic
combination of the models gives the optimal filter (see text).

Don't waste your time on this line of thought. The scheme convergesto a signal of
S(f) = 0. Converging iterative methods do exist; this just isn’t one of them.

You can use the routine four1 (§12.2) or realft (§12.3) to FFT your data
when you are constructing an optimal filter. To apply the filter to your data, you
can use the methods described in §13.1. The specific routine convlv is not needed
for optimal filtering, since your filter is constructed in the frequency domain to
begin with. If you are also deconvolving your data with a known response function,
however, you can modify convlv to multiply by your optimal filter just before it
takes the inverse Fourier transform.
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13.4 Power Spectrum Estimation Using the FFT

Intheprevioussectionwe“informally” estimated the power spectral density of a
function c(t) by taking themodul us-squared of the discrete Fourier transform of some

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

‘(eauBWY YUON apisino) B1o abpugqued@AIasisnoloalip 0] [lewd puas Jo ‘(Ajuo eauawy YUON) £2¥/-2/8-008-T |[ed J0 Wod Ju mmm//:dny

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad



