Time in Distributed Systems

Because each machine in a distributed system has its own clock, there is no notion of global physical time.

- The n crystals on the n computers will run at slightly different rates, causing the clocks gradually to get out of synchronization and give different values.

Problems:

- Time-triggered systems: these are systems in which certain activities are scheduled to occur at predefined moments in time. If such activities are to be coordinated over a distributed system, we need a coherent notion of time.

Example: time-triggered real-time systems

- Maintaining the consistency of distributed data is often based on the time when a certain modification has been performed.

Example: a make program.

Solutions:

- Synchronization of physical clocks

 - Computer clocks are synchronized with one another to an achievable, known, degree of accuracy within the bounds of this accuracy, we can coordinate activities on different computers using each computer’s local clock.

 - Physical clock synchronization is needed for distributed real-time systems.

- Logical clocks

 - In many applications, we are not interested in the physical time at which events occur; what is important is the relative order of events.

 The make-program is such an example (slide 3).

 - In such situations, we don’t need synchronized physical clocks.

 Relative ordering is based on a virtual notion of time — logical time.

 Logical time is implemented using logical clocks.
The order of events occurring at different processes is critical for many distributed applications. Example: Po_created and Pc_created in slide 3.

Ordering can be based on two simple situations:
1. If two events occurred in the same process then they occurred in the order observed following the respective process;
2. Whenever a message is sent between processes, the event of sending the message occurred before the event of receiving it.

Ordering by Lamport is based on the happened-before relation (denoted by \to):
- $a \to b$, if a and b are events in the same process and a occurred before b;
- $a \to b$, if a is the event of sending a message m in a process, and b is the event of the same message m being received by another process;
- If $a \to b$ and $b \to c$, then $a \to c$ (the relation is transitive).

Using physical clocks, the happened-before relation cannot be captured. It is possible that $b \to c$ and at the same time $T_b > T_c$ (T_b is the physical time of b).

Logical clocks can be used in order to capture the happened-before relation.
- A logical clock is a monotonically increasing software counter.
- There is a logical clock C_{Pi} at each process P_i in the system.
- The value of the logical clock is used to assign timestamps to events.
- $C_{Pi}(a)$ is the timestamp of event a in process P_i.
- There is no relationship between a logical clock and any physical clock.

To capture the happened-before relation, logical clocks have to be implemented so that:
- If $a \to b$, then $C(a) < C(b)$.
- If a is the event of sending a message m from process P_i, then the timestamp $t_m = C_{Pi}(a)$ is included in m ($C_{Pi}(a)$ is the logical clock value obtained after applying rule R1).
- On receiving message m by process P_j, its logical clock is updated as follows:
 - $C_{Pj} := \max(C_{Pj}, t_m)$.
- The new value of C_{Pj} is used to timestamp the event of receiving message m by P_j (applying rule R1).

If a and b are events in the same process and a occurred before b, then $a \to b$, and (by rule R1) $C(a) < C(b)$.

If a is the event of sending a message m in a process, and b is the event of the same message m being received by another process, then $a \to b$, and (by rule R2) $C(a) < C(b)$.

If $a \to b$ and $b \to c$, then $a \to c$, and (by induction) $C(a) < C(c)$.

Implementing logical clocks is performed using the following rules for updating the clocks and transmitting their values in messages:
- **[R1]**: C_{Pj} is incremented before each event is issued at process P_j: $C_{Pj} := C_{Pj} + 1$.
- **[R2]**: a) When a is the event of sending a message m from process P_i, then the timestamp $t_m = C_{Pi}(a)$ is included in m ($C_{Pi}(a)$ is the logical clock value obtained after applying rule R1).
 - b) On receiving message m by process P_j, its logical clock is updated as follows:
 - $C_{Pj} := \max(C_{Pj}, t_m)$.
 - c) The new value of C_{Pj} is used to timestamp the event of receiving message m by P_j (applying rule R1).

If a and b are events in the same process and a occurred before b, then $a \to b$, and (by rule R1) $C(a) < C(b)$.

If a is the event of sending a message m in a process, and b is the event of the same message m being received by another process, then $a \to b$, and (by rule R2) $C(a) < C(b)$.

If $a \to b$ and $b \to c$, then $a \to c$, and (by induction) $C(a) < C(c)$.
Lamport’s Logical Clocks (cont’d)

- For the make-program example we suppose that a process running a compilation notifies, through a message, the process holding the source file about the event \(Po \) created ⇒ a logical clock can be used to correctly timestamp the files.

```
1 2
a b
m1
3 4
c d
m2
1 8
P1
P2
P3
```

```
652 653 654 655 656
local physical clock
```

```
648 649 650 651 652
local physical clock
```

Problems with Lamport’s Logical Clocks

☞ Lamport’s logical clocks impose only a partial order on the set of events; pairs of distinct events generated by different processes can have identical timestamp.

- For certain applications a total ordering is needed; they consider that no two events can occur at the same time.
- In order to enforce total ordering a global logical timestamp is introduced:
 - the global logical timestamp of an event \(a \) occurring at process \(P_i \), with logical timestamp \(C_P(a) \), is a pair \((C_P(a), l)\), where \(i \) is an identifier of process \(P_i \);
 - we define \((C_P(a), l) < (C_P(b), j)\) if and only if \(C_P(a) < C_P(b) \), or \(C_P(a) = C_P(b) \) and \(i < j \).

```
(1,1) (2,1)
(3,2) (4,2)
```

```
(1,3) (5,3)
```

Problems with Lamport’s Logical Clocks (cont’d)

☞ Lamport’s logical clocks are not powerful enough to perform a causal ordering of events.

- if \(a \rightarrow b \), then \(C(a) < C(b) \).
 However, the reverse is not always true (if the events occurred in different processes):
 - if \(C(a) < C(b) \), then \(a \rightarrow b \) is not necessarily true.
 (it is only guaranteed that \(b \rightarrow a \) is not true).

```
1 2
a b
(1,1) (2,1)

3 4
c d
(3,2) (4,2)

P1
P2
P3
```

```
C(e) < C(b), however there is no causal relation from event e to event b.
```

- By just looking at the timestamps of the events, we cannot say whether two events are causally related or not.

```
(1,3) (5,3)
```

Problems with Lamport’s Logical Clocks (cont’d)

- We would like messages to be processed according to their causal order.
- Process \(P_1 \) receives messages \(M_1, M_2, \) and \(M_3 \): \(M_1 \rightarrow M_2, M_1 \rightarrow M_3, M_3 \ll M_2 \) \(M_1 \) has to be processed before \(M_2 \) and \(M_3 \). However \(P_3 \) has not to wait for \(M_2 \) in order to process it before \(M_2 \) (although \(M_2 \)'s logical clock timestamp is smaller than \(M_2 \)'s).

```
1 2
1 2
3
4
send(M1)
send(M3)
```

```
1 2 3 4
1 2 3 4
```

```
2 3 4
M1
M2
M3
```

```
4 1 3
```

```
M2
M3
```

```
M2
M3
```

```
M2
M3
```
Vector Clocks

- Vector clocks give the ability to decide whether two events are causally related or not by simply looking at their timestamp.

 - Each process P_i has a clock C_{vPi}, which is an integer vector of length n (n is the number of processes).

 - The value of C_{vPi} is used to assign timestamps to events in process P_i. $C_{vPi}(a)$ is the timestamp of event a in process P_i.

 - $C_{vPi}[i]$, the ith entry of C_{vPi}, corresponds to P_i's own logical time.

 - $C_{vPi}[j]$, $j \neq i$, is P_i's "best guess" of the logical time at P_j. $C_{vPi}[j]$ indicates the (logical) time of occurrence of the last event at P_j which is in a happened-before relation to the current event at P_i.

Vector Clocks (cont'd)

- Implementation of vector clocks is performed using the following rules for updating the clocks and transmitting their values in messages:

 - $[R1]$: C_{vPi} is incremented before each event is issued at process P_i: $C_{vPi}[i] := C_{vPi}[i] + 1$.

 - $[R2]$: a) When a is the event of sending a message m from process P_i, then the timestamp $tm = C_{vPi}(a)$ is included in m ($C_{vPi}(a)$ is the vector clock value obtained after applying rule R1).

 - b) On receiving message m by process P_j, its vector clock C_{vPj} is updated as follows: $\forall k \in \{1,2,...,n\}, C_{vPj}[k] := \max(C_{vPj}[k], tm[k])$.

 - c) The new value of C_{vPj} is used to timestamp the event of receiving message m by P_j (applying rule R1).

Causal Ordering of Messages Using Vector Clocks

The problem has been formulated on slide 12:

- We would like messages to be processed according to their causal order.

 - If $Send(M_1) \rightarrow Send(M_2)$, then every recipient of both messages M_1 and M_2 must receive M_1 before M_2.

For any two vector timestamps u and v, we have:

- $u = v$ if and only if $\forall i, u[i] = v[i]$
- $u \leq v$ if and only if $\forall i, u[i] \leq v[i]$
- $u < v$ if and only if $(u \leq v \land u \neq v)$
- $u \parallel v$ if and only if $\neg(u < v) \land \neg(v < u)$

- Two events a and b are causally related if and only if $C^a(a) < C^b(b)$ or $C^b(b) < C^a(a)$. Otherwise the events are concurrent.

- With vector clocks we get the property which we missed for Lamport's logical clocks:

 - $a \rightarrow b$ if and only if $C^a(a) < C^b(b)$.

 Thus, by just looking at the timestamps of the events, we can say whether two events are causally related or not.
A message delivery protocol which performs causal ordering based on vector clocks.

- **Basic Idea:**
 - A message is delivered to a process only if the message immediately preceding it (considering the causal ordering) has been already delivered to the process. Otherwise, the message is buffered.

- **We assume that processes communicate using broadcast messages.** (There exist similar protocols for non-broadcast communication too.)

Global States

- The problem is how to collect and record a consistent global state in a distributed system.

Why a problem?

- Because there is no global clock (no coherent notion of time) and no shared memory!
Global States (cont’d)

☞ In general, a global state consists of a set of local states and a set of states of the communication channels.

☞ The state of the communication channel in a consistent global state should be the sequence of messages sent along the channel before the sender’s state was recorded, excluding the sequence of messages received along the channel before the receiver’s state was recorded.

☞ It is difficult to record channel states to ensure the above rule ⇒ global states are very often recorded without using channel states. This is the case in the definition below.

Formal Definition

• LS is the local state of process Pi. Beside other information, the local state also includes a record of all messages sent and received by the process.

• We consider the global state GS of a system, as the collection of the local states of its processes:
 \[GS = \{ LS_1, LS_2, ..., LS_n \} \]

• A certain global state can be consistent or not!

• \(send(m_{ij}) \) denotes the event of sending message \(m_{ij} \) from \(P_i \) to \(P_j \);
 \(rec(m_{ij}) \) denotes the event of receiving message \(m_{ij} \) by \(P_j \).

• \(send(m_{ij}) \in LS_i \) if and only if the sending event occurred before the local state was recorded;
 \(rec(m_{ij}) \in LS_j \) if and only if the receiving event occurred before the local state was recorded.

• transit(\(LS_i,LS_j \)) = \{ \(m_{ij} \) | \(send(m_{ij}) \in LS_i \land rec(m_{ij}) \in LS_j \) \}

• inconsistent(\(LS_i,LS_j \)) = \{ \(m_{ij} \) | \(send(m_{ij}) \notin LS_i \land rec(m_{ij}) \in LS_j \) \}

Formal Definition (cont’d)

☞ A global state \(GS = \{ LS_1, LS_2, ..., LS_n \} \) is consistent if and only if:
 \[\forall i, \forall j: 1 \leq i, j \leq n :: inconsistent(LS_i,LS_j) = \emptyset \]
 • In a consistent global state for every received message a corresponding send event is recorded in the global state.
 • In an inconsistent global state, there is at least one message whose receive event is recorded but its send event is not recorded.

☞ A global state \(GS = \{ LS_1, LS_2, ..., LS_n \} \) is transitless if and only if:
 \[\forall i, \forall j: 1 \leq i, j \leq n :: transit(LS_i,LS_j) = \emptyset \]
 • All messages recorded to be sent are also recorded to be received.

☞ A global state is strongly consistent if it is consistent and transitless.
 • A strongly consistent state corresponds to a consistent state in which all messages recorded as sent are also recorded as received.

Note: the global state, as defined here, is seen as a collection of the local states, without explicitly capturing the state of the channel.

Formal Definition (cont’d)

\(\{ LS_{11}, LS_{22}, LS_{32} \} \) is inconsistent;
\(\{ LS_{12}, LS_{22}, LS_{33} \} \) is consistent;
\(\{ LS_{11}, LS_{21}, LS_{33} \} \) is strongly consistent.
Formal Definition (cont’d)

• After registering of the receive event(s) a consistent state becomes strongly consistent. It is considered to be a normal (transient) situation.

\[
\begin{array}{c|c|c}
A & B & C: \text{consistent} \\
500 & 200 & (A,B): \text{strongly C} \\
450 & 200 & (A,B): \text{C} \\
500 & 250 & (A,B): \text{NC} \\
450 & 250 & (A,B): \text{strongly C} \\
\end{array}
\]

- After registering of the receive event(s) a consistent state becomes strongly consistent. It is considered to be a normal (transient) situation.

Cuts of a Distributed Computation

☞ A cut is a graphical representation of a global state. A consistent cut is a graphical representation of a consistent global state.

• A cut of a distributed computation is a set \(C_I = \{c_1, c_2, \ldots, c_n\} \), where \(c_i \) is the cut event at process \(P_i \).
• A cut event is the event of recording a local state of the respective process.

Theorem

A cut \(C_I = \{c_1, c_2, \ldots, c_n\} \) is a consistent cut if and only if no two cut events are causally related, that is:

\[
\forall c_i, c_j : \neg (c_i \rightarrow c_j) \wedge \neg (c_j \rightarrow c_i)
\]

- A set of concurrent cut events form a consistent cut.

\(\{c_1, c_2, c_3\} \): not consistent: \(e_1 \rightarrow e_2 \wedge (e_2 \rightarrow c_2) \wedge \neg (e_2 \rightarrow c_1) \)

\(\{c_1, c_2, c_3\} \): strongly consistent (no communication line is crossed)

\(\{c_6, c_7, c_8\} \): consistent (communication line is crossed but no causal relation).

\(\{c_1, c_4, c_5\} \): not consistent; \(c_1 \rightarrow c_4 \)
Global State Recording (Chandy-Lamport Algorithm)

- The algorithm records a collection of local states which give a consistent global state of the system. In addition it records the state of the channels which is consistent with the collected global state.
- Such a recorded "view" of the system is called a snapshot.
- We assume that processes are connected through one directional channels and message delivery is FIFO.
- We assume that the graph of processes and channels is strongly connected (there exists a path between any two processes).
- The algorithm is based on the use of a special message, snapshot token, in order to control the state collection process.

Global State Recording (cont’d)

Some discussion on how to collect a global state:

- A process P_i records its local state LS_i and later sends a message m to P_j; LS_j at P_j has to be recorded before P_j has received m.
- The state SCh_{ij} of the channel Ch_{ij} consists of all messages that process P_i sent before recording LS_i and which have not been received by P_j when recording LS_j.
- A snapshot is started at the request of a particular process P_i, for example, when it suspects a deadlock because of long delay in accessing a resource; P_i then records its state LS_i and, before sending any other message, it sends a token to every P_j that P_i communicates with.
- When P_j receives a token from P_i, and this is the first time it received a token, it must record its state before it receives the next message from P_i. After recording its state P_j sends a token to every process it communicates with, before sending them any other message.

Global State Recording (cont’d)

What about the channel states?

- P_i sends a token to P_j and this is the first time P_j received a token; P_j immediately records its state. All the messages sent by P_i before sending the token have been received at P_j; $SCh_{ij} := \emptyset$.
- P_j receives a token from P_k, but P_j already recorded its state. M is the set of messages that P_j received from P_k after P_j recorded its state and before P_j received the token from P_k; $SCh_{kj} := M$.

Global State Recording (cont’d)

Maybe, you prefer this view:

- Don’t forget when you look to the picture: we assumed that message passing on a channel connecting two processes is FIFO.
Global State Recording (cont’d)

The algorithm

☞ Rule for sender \(P_i \):
/* performed by the initiating process and by any other process at the reception of the first token */
[SR1]: \(P_i \) records its state.
[SR2]: \(P_i \) sends a token on each of its outgoing channels.

☞ Rule for receiver \(P_j \):
/* executed whenever \(P_j \) receives a token from another process \(P_i \) on channel \(Ch_{ij} \) */
[RR1]: if \(P_j \) has not yet recorded its state then
Record the state of the channel: \(SCh_{ij} := \emptyset \).
Follow the "Rule for sender".
else
Record the state of the channel: \(SCh_{ij} := M \), where \(M \) is the set of messages that \(P_j \) received from \(P_i \) after \(P_j \) recorded its state and before \(P_j \) received the token on \(Ch_{ij} \).
end if.

Summary

• In a distributed system there is no exact notion of global physical time. Physical clocks can be synchronized to a certain accuracy.
• In many applications not physical time is important but only the relative ordering of certain events. Such an ordering can be achieved using logical clocks.
• Lamport’s logical clocks are implemented using a monotonic integer counter at each site. They can be used in order to capture the happened-before relation.
• The main problem with Lamport’s clocks is that they are not powerful enough to perform a causal ordering of events.
• Vector clocks give the ability to decide whether two events are causally related or not, by simply looking at their timestamps.

Summary (cont’d)

• As there doesn’t exist a global notion of physical time, it is very difficult to reason about a global state in a distributed system.
• We can consider a global state as a collection of local states and, possibly, a set of states of the communication channels.
• A global state can be consistent or not.
• A cut is a graphical representation of a global state. Using cuts it is easy to elegantly reason about consistency of global states.
• It is possible to record local states and states of the channels, so that together they provide a consistent view of the system. Such a view is called a snapshot.